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s Section

Abstract. Network worms are a threat to the functionality and security of large
networks such as the Internet. This threat is increased when Local Area Net-
works are used as platforms to propagate massively new infections. In this
work, a LAN is subjected to real attacks of the worms W32 Blaster and
W32.Sasser. A forensic analysis based on the estimation of the entropy for traf.
fic traces indicate that the ensembles show anomalous behavior during the in-
fection. The analysis suggests that the statistical tools, e.g. mean interquartile
(IQR), and the correlation coefficient capture these anomalies. The analysis in-
troduced is robust to the size of the measurement periods used in the traces.

1. Introduction

Internet has become a vital part of the activities of many individuals, and organiza-
tions. The benefits of its infrastructure have revolutionized the way in which commu-
nications are carried out. However, associated with this success, it has had to face a
diversity of network-based attacks, such as viruses, worms, DDoS, etc. Worm spread-
ing is an important issue, since they cost billions of dollars each year. Further, the
risks of new outbreaks are always present.

Traditionally, worm research has been focused on large-scale networks, the contri-
butions of these investigations are clear; however it is important to note that worms
using local scanning techniques have been very effective in their attacks. Localized
scanning [1], gives preference to targets in the address space that is close to the vic-
tim. An infected host scanning for targets in the local space, has a higher probability
to infect than if the scan is made in a random mode within the whole address space.
Accordingly, a localized-scanning worm could infect a local network very fast, and as
a consequence, could use the resources of the infected network to launch a massive
attack to external networks. Therefore, it is important to design mitigation systems
that could early diminish worm spreading in LANs.
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A work related to worm detection in LANs is that in [2], which describes a method
to minimize the damage caused by worms, employing fuzzy analysis of three parame-
ters that are affected: openness, homogeneity and trust. In [3], authors suggest a two-
step algorithm for detecting victims of worms based on the behavior in terms of the
pattern of infection and scanning. With respect to the use of entropy for the anomaly
detection in network traffic, [4] proposes a generalization of the Shannon entropy,
called Nonextensive Entropy. Also, [5] develops an entropy-based approach that
determines and reports entropy contents of some traffic parameters like IP addresses
and ports. They use several compressors, t0 obtain entropy. In our case, we determine
the entropy contents of traffic parameters using a maximum likelihood entropy esti-
mator with no compression and we analyze the correlation of such parameters. In [6],
a behavior-based anomaly detection method is developed by comparing the current
network traffic to a baseline distribution.

In this paper, the analysis is based on forensic evidence obtained in experiments
conducted in a LAN, with an attack at a real academic network under a controlled
environment. This forensic analysis helps us to determine anomalies to declare an
infection status of the network. We captured the traffic for six days of normal opera-
tions, and then we released separately two TCP worms, w32.Blaster. Worm and
W32.Sasser.Worm. The traffic was processed, and analyzed for the identification of
anomalies based on the maximum likelihood entropy estimator of the variables stud-
ied. The objective is to generate standard and anomalous behavioral profiles of the
network under normal conditions and under attacks, to be incorporated into a method
for detection. Estimating entropy, we show that there is correlation of source IP ad-
dresses and those of the destinations, with high variability between results for a nor-
mal operation, and those during the worm attacks.

The paper is organized as follows. In Section 2, we give some basic concepts about
worms. Section 3 gives a mathematical abstraction for the captured traces needed for
our analysis. A discussion of the relation of entropy and worm detection is given en
section 4. Sections 5 and 6 describe our test environment and results. Section 7 gives

concluding remarks.

2. Worms

A worm is a malware or malicious code designed to self-propagate through the net-
work, infiltrating vulnerable systems to exploit their security holes. The fundamental
difference between a conventional virus and a worm is that the latter is autonomous,
i.e., it does not require of the human interaction to carry out its dispersion. A worm
uses network connectivity to transfer copies of itself from a host infected to a vulner-
able host, and to search for new victims through a process called target discovery.
Vulnerability is the necessary condition for a healthy host to become a victim. Based
on how worms are transmitted, there are TCP worms and UDP worms. The major
difference between these two types of worms is that TCP worms are latency-limited
and UDP worms are bandwidth-limited [7].
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2.1. Worm Components

Worms have a modular structure to aid propagation which consists of: Entry mecha-
nism, which exploits known or unknown vulnerabilities in services to gain access into
the target system. Some techniques that worms could use are: buffer overflow ex-
ploits, file-sharing attack, and e-mail attachments. Propagation mechanism, after
gaining access to the target via the entry mechanism, the worm maust transfer the rest
of its body to the target. File transfer mechanisms (e. g. FTP, TFTP, HTTP) are most
popular propagation methods utilized by this mechanism. Targer discovery, once the
worm is running on the victim machine, the target discovery starts looking for new
victims to infect. There are many different methods to infect the next victim. For
instance, sequential, permutation, and random scanning belongs to the scheme of
blind scanning. An improved version of this scheme is the localized scanning, which
uses information from the victim to conduct the scanning to addresses near to the
victim, improving the hit rate of the scanning, In [7, 8] are explained more details
about Target discovery techniques. Payload, is the code responsible for carrying out a
specific task on behalf of the attacker on a target system (e. g. opening up a backdoor,
planting a DDoS, etc.).

2.2. W.32.Blaster.Worm

W32 Blaster.Worm [9], propagates by exploiting the DCOM RPC Interface Buffer
Overrun Vulnerability. It uses a routine that optimizes spread infection in the net-
works closer to the infected host. Blaster attempts to infect sequential IP addresses
endlessly. Each time a host is infected, there is a 40% chance that it will begin at the
first address of its “Class C”-size subnet (x.x.x.0), and a 60% chance that it will start
at a completely random IP address with the last octet set to 0. Once a starting address
is determined, the worm attempts to probe blocks of 20 sequential IP addresses at a
time for hosts with TCP port 135 open, by sending connection attempts to each one
simultaneously. Subsequently, Blaster tries to send a payload exploiting the RCP
vulnerability to the hosts, where a TCP connection successfully could be established.
If its RPC service is vulnerable to the DCOM buffer overflow, the payload causes a
command shell to be bound to port 4444 on the infected target. The shell only stays
open for one connection, and will therefore be closed once the worm has finished
issuing commands. After sending the payload, it assumes that a command shell is
listening on the remote port 4444 and attempts to connect. If successful, it starts a
TFTP server thread on the local machine and sends a command to instruct the remote
machine to download a copy of the "msblast.exe” worm via TFTP. Once the executa-
ble has been transferred, or after 20 seconds have elapsed, the TFTP server is shut
down and the worm then issues further commands to the victim to execute
msblast.exe. Assuming the executable was downloaded successfully, the propagation
cycle begins again from the recently infected host, while the infecting instance con-
tinues iterating through IP addresses, [20].
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2.3. W32.Sasser.Worm

W32.Sasser.Worm [10], propagates by exploiting the LSASS. It is exploited by send-
ing a specially crafted RPC request to the LSASS named pipe on machines listening
on 445 TCP port. Upon successful exploitation, shell code is injected into the
Isass.exe process, which exccutes a shell (cmd.exe) and binds it to 9996/TCP port.
The attacking instance of the worm then connects to this port and sends commands to
the shell to download and run the main worm executable on the recent infected sys-
tem. The download is through FTP, using the default Windows ftp.exe on the client
side (victim). On the server side (attacker), Sasser implements its own crude FTP
server, which listens on 5554/TCP. The infection scheme of Sasser is very similar to
that of W32/Blaster with the exception of using FTP instead of TFTP. Once it is run-
ning on a new machine, Sasser installs itself in the Windows directory under the
name ‘avserve.exe’. Then it simply tries to infect new systems. Sasser generates tar-
get IP addresses using three different methods: completely random IPs are used 52%
of the time; random IPs located in the same /16 network as the host are used 27% of
the time; and random IPs located in the same /8 network as the host are used 21% of

the time.

3. Abstraction of the Captured Traffic

Consider the analyzed traffic trace y of a duration of 1,seconds with a total of
N packets, the set of packet time stamps is denoted by T, ={t,,1,L , fya}. 2 is

divided into M non-overlapping blocks of ¢, = ‘> seconds each. The i-th block has

M
W, packets, i=1,2,L , M, namely N = Z W, . Figure 1 shows this partition.

i=1

V4
- |
II; ﬂ'_; ¥
k. R S
i i T e e e e 25
0 /3 /) (i-Dtp itp
M M M M

Fig. 1. Block representation for the analyzed traffic trace ¥

In each i-block, we analyze four parameter ensembles denoted X7, r=1,2,3,4.

i

Fach ensemble is related to a traffic parameter as follows: X}~ Source IP, X 7~
Destination IP, X*~ Source port, and X; ~ Destination port. An ensemble X7 is a

triplet (x, A X P x‘,) , where the outcome x is the random variable, which takes

on one of a finite set of possible values in an alphabet,
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A, = {a,,az.L »a,,L ,a,} » having probabilities P, = {p,, p,,L , p,}, with
P.(a,)=P(X/ =a,)=P,20 and Y,
. ajeA

content of an outcome x is defined to be h, (x)=log,

PX{ (a/) = 1. The Shannon information
7

5y - The entropy of an
Xt

ensemble X is defined to be the average Shannon information content of an out-
come, i.e.

1
HI(X])= 2, P, (0o ) 1
i x;f X g2 Px{ ® 1
where we consider that for P, (x)=0, Olog,$=0, since lim . 8log%=0. A

property of the entropy function is 0 < H/ (X]) < log, (IA " l) . In order to obtain a

likelihood estimator of H, the discrete probabilities P, in (1) are replaced by

maximum likelihood estimates Px[ - Specifically, if we consider i-blocks of W, pack-
ets or observations, and let n ; be the frequency of the value a ;€A in the ensemble

X! , then, with the choice f’X, = ::—" we have an estimate
;

A/(X)= Y B, (x)log,——. @
stAf : X x)

(2) is the maximum likelihood entropy estimator. Now, during the time of the i-th

block, (—"":,)#, "T';) ,» we have four measures of traffic in terms of entropy that helps

us to construct a representative matrix with dimension 4x M for the trace z .

a8\ (& AL &,
f(p)=| || AL ®
1:‘13 ﬁ: 73 L I"{J -
1 2 M
a)\# B L g

With (3), we have four traffic vectors corresponding to the entropy of a given fea-
ture (i. e. source and destination IP address and source and destination port).

4. Entropy and Worm Propagation

Recently, the concept of entropy has been applied to the development of a new gen-
eration of network security systems. These systems must rapidly detect (in the order
of seconds) a wide variety of intrusions of worms and other attacks, with a low rate of
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false positives and negatives [11]. This contrasts with conventional systems, that
focus primarily on changes in the volume of traffic at specific points of the network
and whose system's response might be hours or even days. The application of the
entropy on these new systems is based on the feature that worm's activity changes the
characteristics of the traffic in measurable ways, these changes alter the entropy of the
network. The entropy of the network is a measure fluctuating between different levels
of predictability and randomness caused by changes in the nature and composition of
traffic. By building profiles of the network’s normal behavior based on the entropy of
traffic features such as the source and destination IP addresses, the source and the
destination port numbers, or even the type of protocol, the number of bytes, and the
inter-packet times, it is possible to define a bascline to verify anomalies correlating it

with current traffic features.

5. Empirical Analysis

a in a LAN operating under normal
W32.Blaster and W32.Sasser. Net-
e projects who share traces for
ble for accurate characterization
lability of suitable traces led us
ehavior patterns of traffic

This empirical analysis is based on collected dat
conditions and under the attack of two worms:
work Security and privacy policies applied for som
research purposes, limit the availability of traces suita
of anomalous traffic caused by worms. This poor avai
to carry out a real worm attack on a LAN to observe the b
under normal conditions for several days and later under worm attacks.

5.1. Network Environment

The worm propagation has been tested in a class C IP network subdivided into four
subnets. There are 100 hosts running Windows XP SP2 mainly. Two routers connect
the subnets with 10 Ethernet switches and 18 IEEE 802.11b/g wireless access points.
The data rate of the core network is 100Mbps. A sector of the network is left vulner-
able on purpose, with ten not patched Windows XP stations. In the experiments
Blaster and Sasser worms where released in the vulnerable sector.

5.2. Data Collection and Tools

The data-set was collected by a network sniffer tool based on /ibpcap library used by
fepdump, [12]. This data-set contains traces corresponding to a six day period of
standard-traffic in user’s typical work hours, and one standard-traffic trace combined
with anomalous traffic of the day of the attacks. All traces were sanited to remove
spurious data using plab a platform for packet capture and analysis, [13]. Traces were
split in segments using fracesplit which is a tool that belongs to Libtrace, [14]. The
traffic-files in ASCII format suitable for MATLAB processing were created with
ipsumdump [15].
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6. Test Results

Our mcthodology is as follows. We first ca;
sis using tools mentioned in section 5.2. Th
the first group consists of standard traffic during normal working hours. The second
group consists of three sub-traces of the day of the attacks: P1, corresponding to ap-
proximately 70 min. of benign traffic previous to the first attack, P2, which is the
traffic during the Blaster attack and, P4, which is during the Sasser attack.

Secondly, we analyze separately the two sets of traces to obtain the following: (a)
the average value of the entropies of the four ensembles, (b) the correlation coeffi-
cients between ensembles of addresses and between ports, and (c) the average values

ies of ensembles obtained with different win-

he group of traces helped us to have a baseline of the
network under normal conditions (i.e. free of worms), which is summarized in Tables

1 and 2. The second group of traces allowed us to observe the behavior of the traffic
after the release of worms and is summarized in Tables 3 and 4.

In the next phase, we analyzed three behavioral
the value of the entropy of the ensembles, the correlati
the ensembles and the changes of the size of the b
estimation of entropy with different window sizes (t

For the first symptom, Figure 2 can be seen as
ior of traffic under standard conditions (sub-trace
and Sasser worms (sub-trace P2 and P4 respecti

pture and process the traces for the analy-
esc traces were classified into two groups:

oxes in the boxplots used for the
his through IQR).

a timeline which shows the behav-
P1) and under attack by the Blaster
vely), the most evident change be-
ge in the value of entropies subse-
N entropy values can be quantified
he average value of the ensemble of
f Table 1) is 3.8 bits and during the
For the Sasser worm rose to 5.78 bits

quent to the release of worms. These changes i
using the results of Tables 1 — 4, We note that t|
source directions in benign traffic (column 2 o
Blaster worm attack declined to 2.12 (Table 3).
(Table 3). In the case of ensembles of destination addresses under normal conditions
the average entropy was 3.5 bits (Table 1), but during the attacks rose to 13.8 under
the Blaster worm and 10.36 under Sasser (Table 3).

Table 1. Entropy values and correlation coefficient during standard traffic.

Trace Mean of entropy (bits) Correlation coefficient
d‘;; HOROR OB B i

1 378 346 296 452 0.80 041

2 382 335 266 457 0.90 0.40

3 3.62 320 266 429 0.94 0.56

4 3.71 342 295 436 0.90 0.45

5 3.64 345 294 439 0.78 0.46

6 4.17 414 413 441 0.98 0.93

The second symptom studied is associated with correlation coefficient of entropy
assemblages of source and destination addresses and ports. The statistical analysis



232 Velarde-Alvarado P., Vargas-Rosales C., Torres-Romdn D. and Muiioz-Rodriguez D.

for the correlation cocfficient calculation, of the network behavior of
allows us to identify a lincar

vs H , as it

using bootstrap,
the six days of benign traffic during normal operation,
relation between the entropies of the ensembles, i.e. H) vs. A? and a;
is shown in Table 1. We can see that all the cocfficients are positive, and some close
to one. However, when we apply the same analysis for segments P2 and P4, we can
see in the last two columns of Table 3 that these coefficients become necgative and
some close to minus one. This can also be used as an indication of the anomalous
behavior present during an attack.

Table 2. Mean values for IQR calculated in 10, 20,30, 60, 120, 180, 240, and 300 sec for

standard traffic days

Trace of IQR(ﬁ:) ]QR(ﬁ,z) [QR(ﬁrs) ]QR(F]:)

day
1 1.15 0.90 0.93 1.47
2 1.48 1.05 0.72 1.79
3 1.48 1.01 1.01 1.71
4 1.64 1.15 1.19 1.49
5 1.20 1.02 1.20 1.38
6 1.00 1.04 0.9 1.13

d correlation coefficient during the day of the attack for the

Table 3. Entropy values an
segments P1, P2, and P4

Sub- Mean of entropy (bits) Correlation coefficient
trace A A} A? a} H! vs. A? A} vs. H}
P1 324 324 362 3.80 0.96 0.97
P2 2,12 1318 427 1767 -0.95 -0.3
P4 5.78 1036 9.1 3.82 -0.45 -0.9

For the third symptom, we analyzed the traces using boxplots which help us to ob-
serve other characteristic behavior. In Figures 3 - 5 and Table 2 and 4, we could see
the mean values of IQR of the ensemble entropies of the four parameters. In Figure 3
and Table 2, we have the mean IQR for standard traffic for different values of ¢,, we
take these as the baseline behavior to compare to those mean IQR for P2 and P4
traces. For the Blaster attack, shown in Figure 4 and the second row of Table 4, we
could see that there is a significant decrease in the mean value of IQR with respect to
that of segment P1. It can also be seen in Figure 5 and the third row of Table 4 that
for trace P4, there is a significant change in the mean value of IQR for H?, indicating

that this parameter is adequate to capture the effect. Another observation is that en-
tropy as #, changes is robust, since regardless of this, the effects of the attacks are
evident with an important decrease in the size of the boxes for the traces in P2 and
P4.
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Table 4. Mcan values for IQR calculated in 10, 20,30, 60, 120, 180, 240, and 300 scc for day
of the attaks

Sub- I0R(A}) IOR (A7) IQR(H,’) IQR(#})

trace
P1 117 1.10 1.67 1.59
P2 0.25 0.73 0.21 0.11
P4 .92 0.78 0.90 1.25

Entropy of IP addresses and TCP ports from Tue 27 Nov 2007 09:44:04 AM EST
to Tue 27 Nov 2007 12:33:33 PM EST . Window §

Is ize = 60 gecs.
_ﬁ: (Source IP) ! : H H
- P2: Deniugn aud
cpemin) Blsster Trafie
- L ﬁ? (Source port)
;-2"_:, —o—f-\{;l (Dest. port)
‘:. 5 AA %
R o
P1: Benign Traffic Blaster Released : :
% 20 40 60 80 100 120 140 160

i-block
Fig. 2. Evolution of entropy in the four ensembles A of traffic during the day of
worm attacks.
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Fig. 3. Boxplot for ¢, =10, 20, 30, 60, 120, 180, 240, 300 in normal traftic conditions
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7. Conclusions and Final Remarks

We introduced a statistical analysis tool for traffic traces in a local network where
ensemble entropy is calculated for four parameters of the traffic. We found that a
significant variation in entropy is an effective way to identify the presence of an
anomaly in the data set. The four feature entropy based detection also helps to iden-
tify worm outbreaks. Although what we introduced were conducted as a forensic
analysis, we can conclude that the methodology could be used with some changes in
an online fashion, due to the robustness of the observation time slot 1,. Analysis of a
number of traffic traces suggested a relationship between the correlation coefficients
and the mean values of IQR for the entropies, and these can be incorporated as a
method to infer anomalous behavior that could represent a network worm attack.

Within the future work we are conducting is the mathematical modeling of the en-
tropy and the traffic traces as the attacks are carried out.
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